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Abstract. The interpretation of the uncertainty principle in terms of a measurement of a 
si@ observable disturbing other obrervah!es, nri‘gi~a!i~g in Hd~enherg’s 1927 paper+ is 
shown to be derivable from an uncertainty principle for joint measurements of incompatible 
observables. T%e latter also limits measurements of a single observable in the presence of 
conservation laws. 

1. Introduction 

In Heisenberg’s classic 1927 paper [I], the uncertainty principle (UP) is introduced with 
the aid of the so-called y-microscope. The set-up is sketched in figure I. In order to 
determine the horizontal component q of the position of a microscopic particle, it is 
illuminated with light of wavelength A. The scattered light is collected through a lens 
with aperture E onto a photographic plate. The resolution of the microscope, in other 
words its inaccuracy as a position meter, is given by 

8, - A/sin E. (1) 
On the other hand, the light imparts a certain amount of momentum to the electron, 
due to the Compton effect. The horizontal component p of the final momentum is only 
known up to [2] 

D,-sinE/A (2) 
( i i  = ij. We might say that the indeterminateness of the recoii causes a dfsturbance of 
the particle’s momentum. The product of the momentum disturbance and the resolution 
satisfies 

D,S, - 1. (3) 

L . - 
;A 

Flpvrc 1. Heisenberg’s y-microscope Gedanken experiment. Light with wavelength A falls 
on a particle E. The scattered light is collected by a lens L with aperture E onto a 
photographic plate F? 
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Heisenberg uses this reasoning as a heuristic argument for the more formal relation 
that bears his name, namely 

(operators are careted; (A’P) denotes But on closer inspection the connec- 
tion between (4) and (3) turns out to be not quite that obvious. On the one hand, 
according to Bom’s statistical interpretation, relation (4) limits statistical scatter or 
spread [3], and both variances derive directly from the object state I$). In (3), on the 
other hand, 8, quantifies a property of the measuring instrument, rather than that it 
is connected to the state of a microscopic particle. Moreover, it characterizes the 
measurement’s inaccuracy: the microscope is not assumed to be a perfectly accurate 
position meter. It does not leave the object in a state with sharp q, and when the object 
is prepared in a state with sharp q, the measurement does not give that result with 
certainty. Therefore the y-microscope is not a measurement of the first kind, is indeed 
not at all a measurement of a self-adjoint operator along the lines of the von Neumann 
axiomatization. But, on the contrary, inasfar as measurement is involved in (4), which 
is only implicitly, it is measurement as axiomatized by von Neumann. 

Physicists have, notwithstanding the aforementioned problems, applied uncertainty 
relations to situations outside the domain assigned to scatter-type relations like (4) by 
Born’s interpretation. But the use of uncertainty relations that are, like Heisenberg’s 
y-microscope relation (3), only informally established, has its disadvantages. Due to 
lack of mathematical exactness, it is often not quite clear precisely what limit is implied 
by a given type of UP. Thus discussion results, as for example in the case of the 
supposed quantum limits to path measurements [4]. In particilar the disturbance 
version ofthe UP, the version that is illustrated by the y-microscope, has been questioned 
[5]. Because of the central place of the UP in quantum mechanics, clarity about its 
meaning is important, however. 

In the present paper we therefore aim to show how uncertainty relations like (3) 
can be derived formally. First we give a formalism, generalizing von Neumann’s, in 
which imperfect measurements like the y-microscope can be discussed. Within this 
formalism an uncertainty principle has been derived [6,7], that limits the accuracy 
achievable in joint measurements of incompatible observables. Relations similar to (3) 
can, as will be shown, in their turn be derived from the latter type of UP, thus confirming 
Heisenberg’s intuition in a formal way. 

It has long been known that conservation laws restrict the possibilities of measure- 
ment [8-111. This has been seen as an extra limitation on quantum measurements, in 
addition to the limits given by the UP. As a matter of fact, however, limits induced by 
conservation laws can be derived from the UP. We end the paper with formal illustrations 
of both the y-microscope and the conservation law limit. 

H Martens and W M de Muynck 

( A ~ B ) ( A ~ c ~ ) ~ +  (4) 

2. Non-ideal measurements 

In realistic situations, measurements are not described by self-adjoint operators, or 
projection-valued measures (PVM~),  but rather by positive operator-valued measures 
(POVM~) [ l l ,  121. The POVM notion forms an extension of the measurementdescription 
of von Neumann’s axioms. For a discrete outcome set K,  a POVM m = { M k }  ( k s  K )  
is a set of operators satisfying 

M k > 6  E M k * = ? .  (5) 
k 
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In general [Mk, M ~ I - Z S  if ~ Z I .  Moreover, as the operator kk need not satisfy fi -if' . . 
k, it IS not necessarily a projector. If the object state corresponds to the density 

operator 6, the probability that a realization of m yields outcome k is given by 
Prob,(k) := Tr(;kk). 

If we measure a POVM m = {kk}, this may be seen as a non-ideal measurement of 
a PVM f = { f i }  if there exists a matrix ( A k I )  such that 

* *  

- 

Mk = 1 Akl f i l  A k l > O  x A k l = l .  (6)  
I k 

Thus the matrix ( A k l )  is a stochastic matrix. Definition (6) implies that the m-proh- 
abilities F'rob,(k) are completely determined by the f-probabilities F'rob,(l) = Tr($F,), 
whereas the reverse is in general untrue. More specifically, the distribution Prob,(k) 
is a 'smeared' version of the f distribution Prob,(l). Even if the object state is such 
that the f distribution is sharp, a measurement of m will in general not give one result 
with certainty. The matrix ( A k I )  is a characteristic of the m-device. The device will be 
least non-ideal if Akl is the Kronecker-& If on the other hand Akl depends only on k 
( A k l = J k ) ,  the non-ideality is maximal. Then Prob,(k) is independent o f f ,  is in fact 
independent of 6. Note finally that non-ideality (6) may be used to define a partial 
ordering on the set of WVMS [ 131. We shall in the following use the shorthand notation 
f + m for (6). The non-ideality notion was introduced by Davies [ll] and by PrugoveEki 
and co-workers [14], and studied more systematically by  the authors in [13] (see also 
[15,16] and other references in [13]). 

For the continuous case, an analogue of (6) can be given. Consider a PVM e = 
{k(x )  dx} on R. Then 

A,(Y)>O [ A&) dy = 1 (7) 
J R  

6 ( y )  = [ AAY)E(x) dx 
JR 

defines a POVM o. It is related to e analogous to the way f is related to m in (6). In 
other words, e + 0. In the special case that A,(y) = x ( y  -x), (7) becomes a convolution 
[ l l ,  131, namely 

&y)= ~ ( y - x ) g ( x ) d x .  I. 
3. Uncertainty principle for joint measurements 

In this section we shall study the joint measurement of two PVMI on the finite 
dimensional Hilbert space e". All characteristic elements as regards incompatibility 
are present in such a space. Moreover, physically relevant results for infinite 
dimensional cases may be obtained through the n + 00 limit. 

A bivariate POVM I = {Rmj}  represents a joint non-ideal measurement of two P V M ~  

e = {kk}  and f = {& if its marginals represent non-ideal measurements of e and f, 
respectively. In other words, it represents a joint non-ideal measurement if there are 
matrices ( A m k )  and (pj I )  such that 

R:,=z Rmj=zAmkEk Amk 0 E A m k = l  
i k m 
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The WVMS r(') = { k!,!)} and I(*) - - {@2:2)) denote r's marginals. Equations (9) may thus 
be equivalently written in the form e -f r(" A f + d2). It has been shown [6] that such 
an r exists for arbitrary e, f .  

An uncertainty principle for joint measurements should imply that the matrices 
( A m k )  and (pj l )  in (9) cannot both approach the Kronecker4 arbitrarily closely, if e 
and f are incompatible. In order to derive such an uncertainty principle, we must 
quantify the amount of non-ideality present in a given measurement, i.e. how much a 
given matrix ( A k I )  differs from the Kronecker-S. One possible non-ideality measure, 
derived from the conditional entropy of information theory, is 
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[f, m as in (6)J J is non-negative. In accord with the interpretation of non-ideality 
and the intended meaning of J, it is zero if Akl = ak1; if Ah, = Ik,  J takes its maximal 
value. The better the measurement, the lower J. It can be shown [6,7,17] that 

J e - p + J f + p > ~  Tr(& (11) 
i 

where 

where {6J is a PVM that commutes with both e and f. (This PVM is introduced to 
resolve cases where e and f have eigenspaces in common.) The right-ha?d side of (11) 
is zero if and only if e and f are compatible (for an optimal choice of (GJ). Thus (1  1) 
presents a non-trivial lower bound for the inaccuracy achievable in joint measurements 
of two incompatible observables. 
On infinite-dimensional spaces, no result as general as (11) is known as yet. But 

for position-momentum, an uncertainty relation can be derived for joint measurements 
with convolution-type marginals, as in (8). We speak of couarianf non-ideal measure- 
ments [6,12,15]. For non-ideality of that type, an analogue of (10) ist 

Then, combining a result of Holevo's for covariant joint non-ideal measurements ([ 121, 
theorem IV.8.1) with an entropic variant [19] of the uncertainty relation (4), we can 
derive the following inaccuracy relation: 

Jp+pi+ J q - p >  l + l o g ( ~ ) .  (13) 
Here q and Q denote the position and momentum PVMS, respectively. The POVM t 
realizes a joint non-ideal measurement of p and q along the lines of (8) and (91, t"' 
and t'" being marginals of t .  Note that the use of entropic quantities in both (13) and 
(11) is not crucial. What is needed is simply some expression of the amount of 
non-ideality in a given function i ( y )  or matrix Ah,. Hence for non-ideality measures 
other than J, relations analogous to (13) and (11) should also be derivable. Indeed 

t The discrete analogue of a convolution involves a square matrix in which the rows arc cyclic permutations 
of each other [6].  Then it follows that [IS] 

-E A H  log(Au) 

for an arbitrary I ,  independent of the distribution (P,). This latter relation corresponds to (12). 
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non-entropic versions of (13) have been derived by Ali and PrugoveEki [IS], and by 
others (e.g. 112,161, cf also [ll]). Such relations, although quantitatively different, 
express the same qualitative principle: that the inaccuracy with which incompatible 
observables are measurable jointly, is limited. 

4. Operations 

As we saw, Heisenberg’s y-microscope involves momentum disturbance as well as 
position inaccuracy. Because in the thought experiment the particle’s momentum is 
not actually measured, disturbance is different from measurement inaccuracy. It is the 
momentum of the outgoing particle that is disturbed with respect to the panicle’s initial 
state. Therefore ‘disturbance’ involves the state of the outgoing particle, i.e. the state 
of the object after the measurement. In the previous section, we described measurements 
with POVMS. This description did not take the output state into account, because that 
was not necessary for a characterization of non-ideality. Now we will first extend the 
measurement description to include the output state. Then, in the following section, 
we shall see that the disturbance problem can be phrased in terms of consecutive 
measurements. Consecutive measurements can be seen as joint measurements. Hence, 
even though disturbance is different from inaccuracy, the formalism for joint measure- 
ments outlined above, can be applied to the disturbance issue. In this way we are able 
to confirm Heisenberg’s reasoning formally. 

First consider a simple model of the measurement. The object, in state bo, is coupled 
to an apparatus in state bd. Then an interaction, corresponding to the unitary operator 
U, entangles these states to bu+d,fina,. Schematically, 

bu + bo@ bd + $o+d.fimai = &a 06dfi’. (14) 
Next some apparatus observable, the pointer observable, is read out. We take this to 
be some PVM (or FOVM), say {Ck] .  Partial tracing over .d shows the object output state, 
conditional on outcome k, to become 

(15) 

Tr[$o+d.fim.~~k*l= T&o,kl =Tr[bokl (16) 

Gk =Trd[bdfitc?kfi]. 

8 
b O + d + P O , k  =Trd[bo+d,fina~(%]. 

The probability of outcome k is thus 

where 

Accordingly, the measurement’s POVM {Gk} on the 0 Hilbert space follows naturally 
from the model [ 11,201. But the full description of this measurement is by the transition 

bO+$k[bO]:= bo,k =Trd[fiba@bdfitek]. (17) 
The mapping (17) is in fact an operation valued measure [ l l ]  (OVM). An operation is 
a linear mapping 4 from the set of trace-class operators into the set of trace-class 
operators, satisfying [20] 

V S l i Z C 4 [ b 1 d  Vp,+b Tr(&$l) Tr(6). (18) 

v;lp,aTr(4[bl) =Tr(b). (19) 

We call an operation 4 non-selective if it satisfies, in addition to (18), 
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Now, an OVM W = { f ik }  (k E K )  is defined as a set of operations Gk such that bK := 
X h E K  Sk is a non-selective operation. The mapping (17) can easily be seen to satisfy 
this requirement. As in (16), the norm Tr(bk[b]) corresconds to the probability of 
obtaining result k. Hence the measurement’s POVM m ={Mh} is uniquely defined by 
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Tr(6f ih)  = T r ( i k [ b ] ) e  fik = i:[i] (20) 
(the adjoint being defined by Tr(&e]a) =Tr(&$+[L]), 7  ̂ trace-class, bounded [20]). 
Note that to a given OVM there corresponds only one POVM, but that there may be 
many O V M ~  for ?ne given POVM. The von Neumann-Luders [21] first kind measurement 
for a PVM e = { E k ] ,  

;-. zk6Sh=: ;*[;I (21) 
is a special kind of OVM, satisfying 6h{i‘1[b]}= Sk,Zk[6] for all 6. 

5. Disturbance 

Perhaps the first concrete meaning for ‘disturbance’ to come to mind, is an increase 
of the statistical spread in the output state for observables that are incompatible with 
the one measured. But, as Kraus [5] has shown, not all OVMS have this effect. Imagine, 
Kraus argues, a device that measures spin. It first rotates the spins 90” around the 
x-axis, and then measures 5y  as in (21). Here sY denotes the PVM corresponding to the 
self-adjoint operator eY. Further denote GY (G2) eigenstates by I-.) and le) (It) and 
13)). Then Kraus’s measurement transforms the spin state according to 

6 + 6 k  k =up,  down (22) 

= I +)(tlblT)(+ I ;down= I +)(3-1bI.l)(4 
The apparatus measures 5, accurately: if the input state is a &=,-eigenstate, the corres- 
ponding measurement result ensues with certainty. Nevertheless &y is sharp in the 
output state, conditional on the measurement outcome. The scatter in eY is certainly 
not increased. 

But note that all information about the &y distribution in the initial state has been 
wiped out. Whatever measurement we next perform on the final state, we learn nothing 
about the original &y distribution. Analogously, we see that in the y-microscope 
experiment a measurement of the momentum of the outgoing particle is not a good 
measurement of the initial momentum, due to the indeterminate recoil. In the following 
we shall therefore interpret ‘disturbance’ in terms of this loss of information. It will 
be shown that a measurement on the final state of another, incompatible, measurement 
is always less informative about the initial state than a measurement of the correspond- 
ing observable on the initial state itself. Against this form of ‘disturbance’ objections 
like Kraus’s do not hold, as opposed to an interpretation in terms of increased scatter. 

Let us now investigate this disturbance notion in a more formal way. Suppose we 
perform, on an obj:ct in state 6, a measurement corresponding to the OVM !Ut = { E k ]  
(with povMAm=(Mk}). When the object has left the W apparatus, we measure the 
POVM n = { N I ]  on it. Then the n distribution is given by 

Tr(bK[b]fiI)  = Tr(b&[ fi l l)=: Prob,,yl( I )  (23) 

as follows from W’s definition in the previous section. Thus, the second measurement 
can be seen as a measurement of the POVM n 0 W:= & [ n l =  {&[NI]} on the initial 
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object state $. If we perform this measurement in order to find out something about 
the PVM f in the initial state, we should therefore choose n such that f -* n 0 W, rather 
than f + n. Only in special cases, e.g. if 

f - f o W = P L [ f l  (24) 

can the two requirements be expected to coincide. In case (24) is valid, the f distribution 
is smeared. But, as Kraus’s reasoning shows, there is no fundamental reason why OVMS 

in general should satisfy a requirement like (24). Indeed (22) does not. In the same 
vein we see, for example, in a non-destructive measurement of photon number [221 a 
disturbance of phase that is not directly connected to an increase in phase spread, or 
to a smearing of the phase distribution. 

Accordingly, if we want to determine the initial f, when %R has already done its 
work, we will aim at minimizing the non-ideality in f + n 0 %R = i:[n]. Using J as a 
criterion, we get the definition 

J Z  := inf(Jt-i;rn,) (25) 

the infimum being taken over the class of POVMS n satisfying f -iL[n]. The quantity 
JZL represents the least inaccuracy with which the initial f can be measured after the 
ilJl measurement has been performed. It is a measure for the amount o f f  disturbance 
in the !R-realization. Take the spin measurement discussed above as an example. We 
see from (22) that there the trivial, uninformative POVM (i} is the only choice for n 
that satisfies 6y+&[n]. Hence J g y  takes the largest possible value, log(2), despite 
the fact that the final G y  distribution is sharp conditional on the measurement outcome. 

Note that (25) is defined for the non-selective operation iK, and can be applied 
to any non-selective operation, whether it is connected to an OVM or not. In particular, 
a unitary transformation @p^] = UpU IS a non-selective operation. It  has zero disturb- 
ance: J P  = 0 for any POVM a. The reason for this is that we could, at least in principle, 
measure the POVM 

^ ^ ‘ + .  

A *  

6 := $[a] = U0 U+ (26)  

on the final state, to obtain unimpaired information on a in the initial state. Thus, we 
see that not every change of p̂  is a disturbance i i  the sense of (25). We might refer to 
changes that may be undone analogous to (26), as distortion, to distinguish them from 
disturbance, which cannot be undone in this way. Thus, whereas E from equation (26) 
distorts without disturbing, we may view (24) as a case where f is only disturbed, and 
not distorted. Generally, however, a measurement transformation will involve both 
distortion and disturbance. The spin example (22) is a case in point. The purpose of 
the somewhat involved formulation of (25) is therefore precisely to separate disturbance 
from distortion, to give the amount of disturbance in a given transformation regardless 
of the possible presence of distortion. 

Finally, we shall relate disturbance to inaccuracy in a relation like (3). Let %R 
measurc some PVM e non-ideally (i.e. e + m). The results of XP and a subsequently 
performed n-measurement give a bivariate distribution F’robmkn~gt(k, I ) ,  

The marginals of this bivariate POVM {$:[??,I} are m and n 0 W = &‘,[n]. Thus, if n 
satisfies f + &[n], the two consecutive measurements together form a joint non-ideal 
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measurement of e and f. Since for all such n the inaccuracy relation (11) must hold, 
it follows that the disturbance ( 2 5 )  must satisfy 

Je+,,, + Js; 3 Tr( 6 , ) ~ ~ .  (28) 

From (28) we see that, the lower the inaccuracy Jc+,,, is, the stronger the lower bound 
on the disturbance J i L .  Thus the full validity of Heisenberg's disturbance idea is 
demonstrated, contrary to Kraus's skepticism. 

Application of the joint measurement UP (13) for position-momentum gives, in a 
completely analogous way, a connection between the position inaccuracy and the 
momentum disturbance. Again, the entropic nature of (281, like that of (11) and (13) 
is not fundamental. If we start from other versions of these latter relations, different 
forms of (28) result. These would, although quantitatively different, express the same 
general principle as (28). 
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6. Example 

We next consider a measurement model to illustrate the disturbance idea, and its 
application in a disturbance-inaccuracy relation like (28). In contrast to other treatments 
[4,23] we take a rathermore abstract route. That has the advantage that the assumptions 
which go into the reasoning can be clearly distinguished. In this way we can see which 
aspects of the model are general, and which are not. We shall first present the reasoning 
leading to the disturbance-inaccuracy relation for this particular case, briefly highlight- 
ing the assumptions made on the way. After this, their meaning is discussed more 
fully, as are other aspects of the model. 

As in section 4: we describe theAmeasurement process by means of a poicter system 
d and a read-out observable c = { C(q)  dq} on Xd. If the unitary operator U describes 
the interaction between system d and the object 0, then the device's OVM VI = { & ( q )  dq} 
and POVM a = {.&q) dq} are given by 

& ( q ) [ h I  = T k [  &%@6&te(q)l 
A ( q )  = &'(q ) [ i ]  =Trd[bdfit&(q)fi]. (29) 

In the y-microscope the system d directly interacting with the particle 0 is the 
light field. It  is customary to take this field monochromatic, so as to have a well defined 
initial momentum. This can be formulated as a condition of invariance of the initial 
d-state bd under translations, yielding as our first assumption that & satisfies 

S d ( X ) b d S L ( X )  = ;&a (30) 
for aiii x, the unitary operator &(xj  corresponding to a position shift of system d 
by an  amount x. In the y-microscope, the read-out of the position measurement is 
performed by the lens and the photographic plate. Accordingly, the read-out observable 
is here taken to have a continuous outcome set, c = { C(q)  dq}, which is covariant under 
a simultaneous position shift of both object and measuring apparatus. This is expressed 
by our second assumption to the effect that the read-out observable satisfies the equality 

" 

S ~ ( x ) ~ s : ( x ) e ( q ) $ ( x ) ~ ~ ~ ( x )  = 6(q -x )  (31) 

t By restricting the assumption of translation invariance to a finite interval it is possible to deal with the 
problem that states satisfying (29) for all x arc not normalizable. For the sake of simplicity we shall not 
consider this here. 
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&(x) corresponding to a position shift of the object 0. By (31) it is expressed that the 
effect of a position shift x of both object and measuring instrument on the probability 
distribution of the read-out observable can be described by a translation of the 
coordinate system. Because.( only operates on Xd, condition (31) is equivalent to 
covariance with respect to Sd(x )  alone. 

For simplicity's sake we assume that 0 has only one degree of freedom (or, 
equivalently, that the meter is insensitive to the other ones). Further we take an 
interaction in which total momentum is conserved. 

Finally we assume the interaction to satisfy the equality 
A *  

UQo@fdfi'= &,@id (32) 

for some operator Go on Xu. This condition can easily be seen to be equivalent to the 
equality 

1 

Tro&&=Tro eo Trd fi&@c,fit 
which means that the measured observable (i.e. position &), is itself not disturbed in 
the sense of section 5 .  In other words, the device does not hamper a subsequently 
performed position measurement. This assumption is implicit in other models [4,23]. 
It implies a generalized form of the so-called measurement of the first kind, satisfying 

Iq)o@I+)d + fiIq)o@I+)d = IQ)aOI+(q)), (33) 
" 

where id = I+)d(+I, and 
from this requirement that the states 

denotes an eigenstate of eo at eigenvalue q. It is clear 
and lQ2)o must be orthogonal if and 

must be invariant with respect to &(A¶) up to a 
phase factor exp(ipAq). This, together with conservation of total momentum in the 
interaction between systems 0 and d, makes it possible to obtain the final state in 
(33), up to a phase factor, by means of a position shift from the state at the fixed point 
q = 0, i.e., 

Ido are. 
In order to satisfy (30), 

lq)o@l+(q))d = e x p ( i p A q ) ~ o ( A q ) @ S d ( A q ) l ~ ) ~ @ l ~ ( q - A q ) ) d  

= exp( ipps)~o(s )oS, (q)I~)~~I+(o) )d .  (34) 

Finally, from the covariance requirement (31) it follows that our model satisfies the 
useful equality 

d(+(O)l&I -q') l+(o))d = d ( + ( o ) l ~ ~ ( ¶ ' ) ~ ( q ) ~ d ( q , ) l + ( o ) ) d .  (35) 

This completes our model. We now want to study its properties as regards position 
measurement inaccuracy and momentum disturbance. We first consider position 
measurement inaccuracy. One possibility for perf$wming an inaccurate posi- 
tion measurement would be by measuring the position Qd of d in the final state. Then 
(33) would yield 

, 
hob(q )  = J dq'l~(ql+(q'))~l2I+~0(~')1* 

+,,(q') being the initial object wavefunction. It is clear from this expression that the 
inaccuracy of the position measurement is caused by the spreading of measurement 
results q for given q'. 
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More generally, it can be shown that an observable c as defined above represents 
a non-ideal measurement of position. Thus, using (29) to define the POVM that is 
actually measured, it follows straightforwardly from (32)-(35) that 

‘W%A(q)l= ] dq’(q’l~01q’)d(4(0)l~(q - q’)14(0))d. (36) 

Comparing (36) to (8) we see that o is a non-ideal measurement of q, with d(4(0)l 
C(q-q’)14(0))d as the ‘smearing’ function x. From (35) and (36) we conclude that 
the measurement inaccuraty is directly connected to how good the FOVM (C(q) dq} 
can distinguish the states Sd(q’)14(0))d [23]. Take as a measure of distinguishability 
the function (proposed by Wootters [24]) 

R 

W A q )  = I [&(O)I&q - ~ ~ ~ l ~ ~ O ~ ~ d d ~ ~ ~ O ~ l ~ ~ q ~ l ~ ~ O ~ ~ ~ l ” 2  dq 
R 

[d(4(0)ls^$(Aq)e(q)s,(a4)l4(0)), 
= jR 

x d ~ 4 ~ ~ ~ l ~ ~ ~ ~ 1 4 ~ ~ ~ ~ ~ l ” 2  4. (37) 
Whereas U ( 0 )  = 1, with increasing Aq the function U is expected to fall off. The faster 
this goes, the better c distinguishes the pointer states. Of course c should be chosen 
such that optimal distinguishability is achieved, i.e. such that U is as low as possible 
for A q Z 0 .  For given I$(O)), the distinguishability function U cannot be decreased 
indefinitely, however: it bas been shown by Hilgevoord and Uffink [25] (cf [26]) that 
U is bounded by 

U ( A q )  3 I~(4(O)ls^~(Aq)14(o)),l (38) 
thus implying also a lower bound to the accuracy of the position measurement described 

Next we determine the momentum disturbance. For this the following result, which 
by (36). 

can be derived from (34) for the OVM ‘U defined in (29), is helpful: 

Tr[&(W)[&l exp(-ixfio)] = Tr[~(R)[&ls^u(x)l 

u ( x )  = exp(-i~x),(4(O)I~$(x)I~(O)),. 

= u(x) Tr[bg exp(-ixfi,)] (39) 

Since &(W)[60] is just the final object state, this implies that in the course of the 
measurement the amplitude of the Fourier transform of the object momentum distribu- 
tion is multiplied by a factor u ( x ) ,  1u1 s 1. From this it directly follows by taking the 
Fourier transform that the final momentum distribution is a convolution of the initial 
one with a positive distribution function. Evidently, by the measuring process discussed 
here momentum is disturbed in the sense of being ‘smeared‘, the disturbance being 
larger as u(x) deviates more from 1. 

The absolute value lul of the factor in (39) may be recognized as the right-hand 
side of equation (38). This latter inequality shows that good distinguishability of the 
pointer states requires a low value for 1141. Substituting that low value into (39), we see 
that the Fourier transform of the momentum distribution is reduced significantly, thus 
implying a large momentum disturbance. Hence, momentum disturbance and position 
inaccuracy are complementary in the sense that by improving one the other is made 
worse. This is in complete agreement with the conclusions of section 5 (although there 
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we used different measures to characterize the amounts of disturbance and inaccuracy 
in the general result from the ones we employ in this example). 

This measurement model has, like the y-microscope itself, a number of special 
properties. Firstly,-we return to our third assumption, (32). As follows from (32) and 
(331, the PVM of QO is the observable we must measure on the final 0-state in order 
to obtain information on &position in the initial state. More generally, it can be shown 
that the model satisfies 

T r [~ (W[~o l . f (&) l  = Tr[&f(&)l (40) 
for arbitrary functions f: Therefore (32) implies that the position observable qo is not 
disturbed in the sense of (25): J6'O=O [cf (26)]. Secondly, this model has the special 
property that momentum information remains in the momentum distribution, as can 
be seen from (39). In other words, a momentum measurement on the final object state 
is a non-ideal momentum measurement for the initial object state [cf equation (24)l: 

P O +  a^'(W)[POl. (41) 
Contrary to the complementarity between disturbance and inaccuracy as expressed by 
(28), both of these special properties are not necessarily representative of measurements 
in general. We shall now investigate to which properties of the device they are connected. 
First consider position non-disturbance. Our device was intended to measure position, 
i.e. qo+a. Since this impli$s that the operators a(q) defined in (29) must commute 
with the position operator Qo, this requirement is equivalent to invariance of the mvM 
with respect to momentum shifts [13]: 

&I)= fkJ)&I)fo(P) (42) 
the unitary operator ?&) effecting a momentum shift by an amount p. From the 
right-hand side of (42) we have 

Tr[&q) ?O(p)~o%-(p)l = Tr[ fi[ ~o(P)L%%(P)~ @pdfi t6(q)1 

=Trt  ~ ~ ~ ~ O ( P ) ~ ~ ~ ~ ~ ~ I ~ ~ ( P ) ~ ~ ~ ( ~ ) I  
= Tr[ ?( p )  0 &fit f+( p) 6(q)] 

= Tr[ fi& 0 fit '?( p )  6( q ) f (p)]  (43) 
with f ( p )  defined by 

and 6 = fieo@ idfit. Note that in general 6 is not operaling pxclusively on the 
object variables. Hence, comparing with (32) we see that Q #  & @ l d  in general. 
From (42) and (43) it follows that a sufficient condition for qo + a is: 

?(p) = fiTO(p)fit=exp(ipd) (44) 

j t ( p ) 6 ( q ) f ( p )  = 6(q)0[6(q), 61- = d. (45) 
1 

If 0 is an operator on Zo alone, as is the case in (32), equation (45) is automatically 
fulfilled, because c operates on Zd. In conclusion, we have shown that position 
non-disturbance (32) is a suficient condition for the meter to measure position. Position 
non-disturbance is, however, not a necessary condition for c to represent a non-ideal 
position measurement. Thus, if the states l & ( q ) ) d  in (33) are orthogonal for different 
values of q, the states may be allowed to be non-orthogonal. Nevertheless, any c 
that is diagonal in the l&(q))d representation describes a non-ideal position 
measurement. 
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We now consider the second special property, equation (41). Using the three general 
properties, namely, the invariance property (30), momentum conservation and the 
covariance property (31), we see that: 

.I(s)l$(x)booSf(x)l 

= Tr,[ i r [ $ ( x ) ~ , s ~ ( x ) ] O ~ , ~ ' ~ ( q ) ]  

=Tr,[ ~ [ $ ( x ) b , ~ b ( x ) l O [ ~ , ( ~ ) b ~ , s ^ ~ ( x ) l ~ ~ ~ ( q ) ]  

=Tr,[&,(x)O~~(x) ~ ~ o O ~ , ~ t ~ ~ ( x ) O $ L ( x ) i . ( q ) ]  

= $(x) Tr,[ir~oo~,,irts^~(x)o~L(x)i.(q)so(x)O~,(x)]s~(x) 

= $(x) Tr,[ &,@$,6'e(q -x)]&x) 

= So(x)&(q -x)[;o]$f(x). (46) 

Therefore the OVM is covariant with respect to 0 position shifts, 

ei(q)[~oo(x)bo~L(x)l= &x)e(q -x)[bols^L(x) (47) 

implying 

&(x)'4(q)$(x) =R(q-x) 

for the POVM a. Physically, covariance of the OVM means that the response to  a shifted 
input state is also shifted, as is the output state. It has the consequence that a^(q)'s 
adjoint satisfies the equality 

JR S~(x)st(q)[fiolio(x) dq E S~(x )e t (~ ) [ f io~80(x )  

- - U  : t m > r 8 t i , > 8  \ M / L " O \ * l ' O U O l * l J - ~  8 i..\i-:*m>r6~i \ " I L * O l  (49) 
which means that [&t(R)[60], 60]-=6. Thus, if d is insensitive to  0's other degrees 
of freedom, OVM covariance (47) implies equation (41). Hence in the y-microscope p 
disturbance goes, as a consequence of the device's covariance, hand in hand with an 
increased P-scatter. 

7. Conservation laws 

Consider a measuring apparatus d, with OVM U and FQVM a, which me!suresposi$on: 
q,+a. d interacts with an object 0 such that total momentum Pp,= P,+Po is 
conserved. In principle it is possible to use a second meter to measure P,,, after SP has 
Y'LLV'L.'.," .La , , l b O l , , U L I I I I * . L L .  us,, L-p,e,,pl ..L" ,_ 'YL."Y".."...b ." 
fi,,,, (and analogously for the PVMJ of 9, and fro), and assume apparatus and object 
to be initially in states and bo, respectively. For the pto, outcome distribution we 
can then write 

narF..rmn.i ir- ,..-nr..mman+ r .. .= J E  I -l Aril the DIrL1 pfiwprnnnAinn ,n 

Prob,Jp) = Tr[b,+,h..,Bp,~,(p)1 = Tdb~@i%gp,J~)1 

Tr[&k,(p -PYI 'M&im(~ ' ) l  dp' 
= 1. 
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Thus the pto, measurement can be written as a measurement of the WVM 

fib)= A ( p - p ’ ) e , ( p ’ )  dp‘ (51) I,, m;={fi(p)dp} 

on the object Hilbert space. If we compare this to (8), we see that 

Po -, m. (52) 
Hence the measurement of p,ot can be interpreted as a non-ideal measurement of the 
object’s momentum. Moreover, the inaccuracy of the p,,,-meter as a pa-meter is 
characterized by the initial spread of the Pd distribution, Tr[bdkpd( p)] = A ( p ) .  There- 
fore applying (12) leads to: 

J, , - ,  = H&:= -I T~[,&~&J)I WTr[Afipd(p)1} dp. (53) 
R 

Since the apparatus d measures the WVM a, this composite scheme would measure 
m and (I jointly. Furthermore, as q, + a, the scheme would in fact be a joint non-ideal 
measurement of q, and PO. But even in such a hypothetical scheme the position and 
momentum inaccuracies J,,,. and J,,,, cannot violate the uncertainty relation (13). 
Hence, using (53), it follows that for finite Hod only a less than ideal position 
measurement is possible [lo, 271: 

Jsa-.* 1 +lOg(m) - H f i d .  (54) 
In the reasoning that led to (54), we can distinguish three steps. Firstly, it is possible, 

in principle, to measure a conserved quantity on the meter+object system, after the 
meter has done its work. Because of the conservation law, this is equivalent to measuring 
that conserved quantity on the initial meter+ object state. Secondly, such a measurement 
on a composite system may be interpreted as a non-ideal measurement of the corres- 
ponding quantity on the object system, with quality determined by the spread of the 
involved apparatus quantity. Thirdly, the inaccuracy principle comes in, linking the 
quality of the meter to that of the possible overall measurement, i.e. to the aforemen- 
tioned spread in the apparatus quantity. We can then try to apply such reasoning to 
more general ca%es. As r5gards the second step, it can be seen [6,13] that a measurement 
of an operator F,ol =f(Fd, F,), for some functionf, can be interpret5d as a non-ideal 
measurement of F,, the measurement’s quality b+g related to the Fd seread. Thus, 
suppo:e thatla meter measyesSome operator Go, and let there be an Fu such that 
[Go, FO]- # 0 and =f(Fd, Fo) is conserved. Then a resultAanalogous to (54) can 
be derived from a joint measurement uncertainty relation for Go and Fa, if available. 
For finite dimensional PVMS, equation (11) can be used. 

We can conclude that, if a conserved quantity exists that does not commute with 
the measured operator, then the measurement must be a non-ideal one in the sense of 
section 2, its quality being limited by a suitable generalization of (54). Hence it is also 
impossible that the measurement is exactly a von Neumann measurement in the sense 
of (21). This conclusion was reached already by Wigner and by Araki and Yanase 
[8,9] on the basis of model studies of angular momentum measurements. Yanase [9] 
concludes that it is a limitation of quantum measurements in addition to the UP. But, 
as the above reasoning shows, the joint measurement UP entails that limits of type (54) 
hold in the presence of conservation laws. Accordingly, such limits need not be seen 
as extra limitations on quantum measurements, in addition to the UP. Yanase [9] 
further shows the possibility of realizing at least an ‘approximate’ measurement. We 
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shall now also present an example of an approximate measurement, in the sense of 
non-ideality (6). 

Consider an apparatus SP that consists of two subsystems, an ancilla PB and a meter 
%. %' reads out the WVM c, a non-ideal measurement of qo-q, onthe OA+BAHilbert 
space. But the operator Qo - Qss commutes with total momentum P,o, = Po + Pss + FV, 
so that its measurement gives no problems in principle. Therefore c may approximate 
qo-q, arbitrarily well, and we choose c =q,-q,. A suitable interaction Hamiltonian 
would be [27,28] 

where K is a coupling constant, and 2, is a %-operator commuting with pw. The 
(qO-qe) measurement on the O+ 33 Hilbert space can be seen as a measurement of 
a WVM a on the object Hilbert space, a being calculated by partial tracing [cf (16)l. 
The latter POVM is, analogous to (50), a convolution-type non-ideal measurement of 
q,, with quality determined by the initial spread in q,, 

J,,- .= Hem. (56) 

(57) 

H Martens and W M de Muynck 

. e , = K ( ~ o - & ) 2 w  ( 5 5 )  

We also have an entropic uncertainty relation [ 191, 

w$reAwe have used the fact that the pair {&, ps+pv} is unitarily equivalent to 
{Q,, P,). Since Pd = ps + pV, combining (56) and (57) gives 

H 6- + H F - + @ ~  2 1 + log( T )  

J s o - . 2  l + l o g ( ~ ) -  H p d .  ( 5 8 )  
Thus, equation (54) is satisfied. A similar model is given by Ozawa [27]. 

8. Conclusions 

One of the interpretations Heisenberg gave the uncertainty principle in his 1927 paper, 
involves measurement accuracy on the one hand and the disturbance of an incompatible 
observable on the other. This form of the uncertainty principle can be derived from 
an uncertainty principle that limits the accuracy achievable in a joint measurement of 
two incompatible observables. The latter uncertainty principle can also be used to 
derive bounds for the measurement of observables that do  not commute with conserved 
quantities. 

We gave an example which showed that imprecise measurements of such observables 
are nevertheless possible. Another example, analogous to the y-microscope, illustrated 
the disturbance uncertainty principle. Two important properties of the device followed 
from very natural demands: that it measures position follows from the fact that it does 
not disturb position, and that momentum information remains in the momentum 
distribution, follows from the meter's covariance. Both demands were combined in a 
concrete scheme, where the position inaccuracy and momentum disturbance follow 
from two complementary properties of the set of pointer states. 
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